

Learn OpenStack Over Lunch

1

Tom Fifield tom@openstack.org @Tom Fifield

OpenStack provides access to compute, networking and storage

Access compute resources

Access networking resources

Access **block storage** resources, which attach to servers like disks

Access **object storage** resources, which are accessed over HTTP

OpenStack includes a web-based Dashboard service

~~	概要		fif	ieldt@unimelb.edu.au としてロ	グイン中 設定 ヘルプ ログアウト
nectar	利用可能リソース概要				
ブロジェクト					
現在のプロジェクト pt-27	インスタンス 10 個中 1 個使用中 2	仮想 CPU 個中 1 個使用中 9.8	メモリー GB個中 4.0 GB個使用中	セキュリティグループ 10 個中 6 個使用中	
コンピュートの管理	使用量を確認する期間を選択してください:				
概要	開始: 2014-02-01 終了: 2014-02-10 送儀 日付は YYYY-mm-dd 形式にする必要があります。				
インスタンス	稼働中のインスタンス: 1 使用中のメモリー: 4GB 期間中の仮想 CPU 時間: 17.56 期間中の GB 時間: 702.40				
ポリューム	使用状況				
イメージとスナップショット	インスタンス名	仮想 CPU	ディスク	メモリー	稼働時間
アクセスとセキュリティ	docwork	1	40	4GB	6ヶ月,3週間
オブジェクトストア	1 項目を表示中				
コンテナー					

Make requests with command-line tools or REST API

\$ nova boot --image precise --flavor m1.small myinstance

Also... Python bindings!

```
import novaclient.v1_1.client as nvclient
creds = ...
nova = nvclient.Client(**creds)
```

```
image = nova.images.find(name="precise")
flavor = nova.flavors.find(name="ml.small")
```


Project is very active with many contributors

Global Community

11

Countries with members

Openstack

To Name Just a Few...

What does the architecture look like?

System is a collection of RESTful web services

Compute service manages VMs on compute nodes

Image provides a catalog of virtual machine images

Identity handles authentication and service catalog

Network service manages connectivity for VMs

Block storage manages block devices that attach to VMs

Object storage manages binary objects accessed via HTTP

Dashboard service provides web interface

Let's look at an example.

Aliceis a web developer who needs an Ubuntu server to deploy her app for testing

Start a server using the 'ubuntu12.04' image and attach it to network 'mynet'

1. Get the compute endpoint and an auth token

2. Start a new compute server

3. Download the ubuntu12.04 image

4. Retrieve the image from the object store

5. Determine how to connect the VM to 'mynet'

6. Start the virtual machine

Alice sees that her server is now running and connects to it via ssh.

Alice's OpenStack Picture

Compute	Web servers		
Networking	Load balancers, private network to database		
Block Storage	Code and configuration		
Object Storage	Application assets, user uploaded files		
Database	State storage		

... but how does that work?

Each OpenStack service is implemented as Linux * daemons

Daemons use non-blocking I/O with *eventlet* to handle multiple requests

Daemons maintain persistent state using an SQL database via SQLAIchemy

Daemons communicate using remote procedure call over message queue

CLOUD SOFTWARE

Let's go back to the earlier example

Ask *nova-scheduler* to find a compute node that can fulfill the request

Dispatch the request to *nova-compute* on a node that has enough resources

Download the image from the Image service

Get network connection info from Networking service

Ask the hypervisor to start the virtual machine

So, what is OpenStack?

OpenStack Mission

To produce the

ubiquitous open source cloud computing platform

that will meet the needs of public and private clouds regardless of size, by being simple to implement and massively scalable.

The OpenStack Foundation

Protecting, **Empowering**, and **Promoting** OpenStack software and the community around it, including users, developers and the entire ecosystem.

- Over 14,400 Individual Members, up from 5,600 at launch
- The leading Global IT companies as Gold & Platinum Members
- Board of Directors that sets strategic direction
- Project Technical Leads and a Technical Committee that are elected from among the contributors
- User Committee to <u>ensure your voice is heard</u>

Interacting with the Community

- All development is open
 - Etherpad \rightarrow Blueprint \rightarrow Coded \rightarrow Reviewed \rightarrow Released
- Collaboratively design features
- Competitors working together
- Every line of code reviewed by at least two people
- An extensive continuous integration and testing infrastructure

Documentation, Translation, Infrastructure is all Collaborative You are welcome to join!

Customisation

- OpenStack doesn't quite do what you need?
 - Add it, but contribute back if possible
- Many things are pluggable
 - Eg Object Storage Middleware Pipeline
 - Eg Compute Scheduler
 - Eg Dashboard
- Get a DevStack running and play!

Interacting with the Community

- . Ask OpenStack! (http://ask.openstack.org/)
- . https://wiki.openstack.org/wiki/MailingLists
- . https://wiki.openstack.org/IRC
- . Your local user group
- . The comments section on that almost-related blog
- . The OpenStack User Survey

// DEVELOPERS // USERS // OPS

ATLANTA, USA

May 12-16 – Atlanta, USA

Design Sessions: not a classic track with speakers and presentations - generally an open brainstorming discussion on a given feature

Conference Sessions: Keynotes, Case Studies, Ecosystem, Operations, Strategy, Workshops

Thank you for supporting OpenStack

Ask Questions at ask.openstack.org

Tom Fifield tom@openstack.org @Tom Fifield

