NEW WORLD. NEW NETWORK.

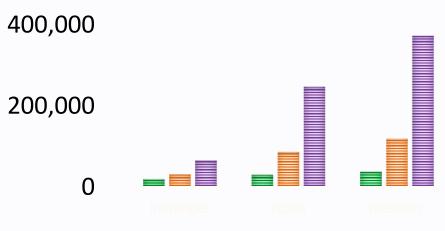
Brocade: Your Partner for the New IP

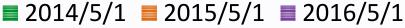
ヤフーが手掛けるベアメタルOpenStackと ブロケード流「自動化」

【本日のゲストは】

西山 貴彦様

ヤフー株式会社システム統括本部


サイトオペレーション本部



第一部 ベアメタル OpenStack

ヤフーさんの現在のインフラ規模について教えてください

ヤフーでのOpenStack(VM)の規模

伸び率 (YoY)	2015年	2016年
インスタンス	156%	211%
vCPU	286%	284%
メモリ	316%	312%

- 前年比でインスタンス数が1.5~2倍 程度増えている
- ハイパーバイザの強化により 1インスタンス辺りの リソースも増えている

仮想化を推進されていますが 物理サーバってこれからも 増えるんですか?

ヤフーでの物理サーバの状況

- 仮想化も進んでいるが物理サーバ台数も拡大している
 - ◆ OpenStackの社内展開開始(2013/09)後も増えている
 - 3年で3割程度増加

物理サーバが増える理由

- VMでは性能が足りないサービスが存在する
 - ◆ CPUリソースが重要なサービス
 - Hadoopなど
 - ◆ ディスクioが激しいサービス
 - Elastic Searchなど
 - ◆ レイテンシが重要なサービス
 - 広告配信など
 - ◆ 大容量ディスクが必要なサービス
 - オブジェクトストレージのデータノードなど

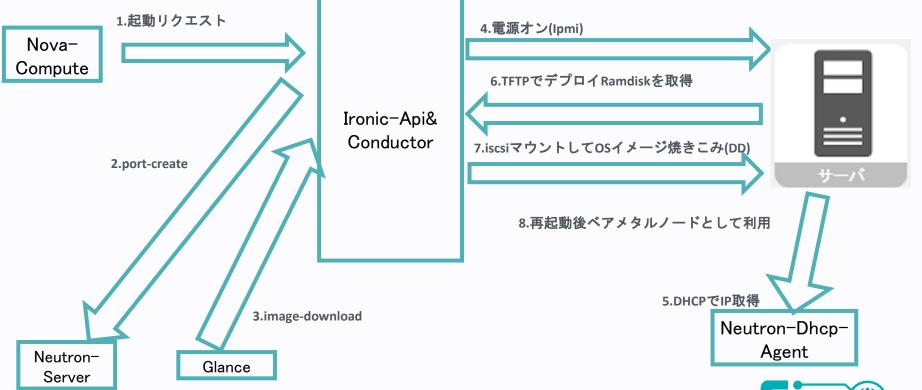
ベアメタルプロビジョニング で登場する Ironic って?

About Ironic

- OpenStackにおけるベアメタルプロビジョン用コンポーネント
 - https://wiki.openstack.org/wiki/Ironic
 - ◆ Icehouseでスタートし、Kiloでintegratedプロジェクトに

Ironicで出来ること(1/2)

- ベアメタルノードの情報管理
 - ◆ ハードウェアスペック、macアドレス、ipmi接続情報
 - ipmi接続情報をnode-create時に入力
 - Ipmi = Intelligent Platform Management Interface
 - ネットワーク越しにサーバを直接操作する規格
 - ◆ ハードウェアスペックとmacアドレスを筐体から取得
 - Ironic-Inspectorを利用
 - 専用ramdiskでpxebootして取得
 - ◆ (Mitakaから)raid構成の管理



Ironicで出来ること(2/2)

- ベアメタルノードの操作
 - ◆ ipmiを利用
 - ◆ 電源操作、電源状態管理
 - ◆ コンソール接続
 - 但しNova-Compute側のドライバに未実装のためNova-Consoleとは連携できない
- ベアメタルノードへのイメージのデプロイとクリーニング

Ironicでのデ<u>プロイ</u>の流れ

従来と比べたメリット

- 使っていないサーバの入れ替えがしやすい
 - ◆ 従来: 廃棄するまで同じ利用者がサーバを用途を変えて使っていた
 - ◆ Ironic: 使うときのみ払いだす = その他のサーバはすぐ変えられる
 - 管理者側でライフサイクルが可能になる
 - ◆ ラックが歯抜けにならなくて済む
- (利用者からみて)利用開始までの時間が早い
 - ◆ 従来: 物理サーバの発注から利用開始まで1ヶ月
 - ◆ Ironic: デプロイするだけなので10分

(参考)ラックの歯抜け問題

- 最初はラックを埋めるように設置される
- サーバのライフサイクルがサービス依存のため捨てるタイミングが ずれたり、違う拠点に移設されたりする
- 残されたサーバが歯抜けになってしまう
 - ◆ 他所から移設される場合もあるが限界がある
- ラックが埋まらなくなり、スペースが無駄になってしまう

現在のヤフーさんでの Ironic 取組み状況は?

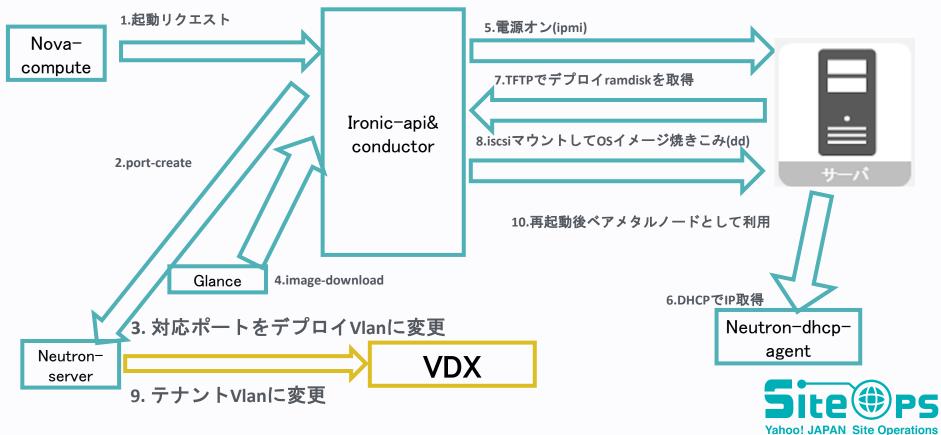
ヤフーにおけるIronicの取り組み

- Kiloリリースから検証を開始
- Libertyリリースのクラスタを複数構築
 - ◆ 開発環境1クラスタ
 - ◆ プロダクション環境4クラスタ
 - PaaSのバックエンドやElastic Searchなどで利用中
 - 1クラスタ数百台規模

ネットワークまわりの要件と課題は?

ネットワーク周りの課題

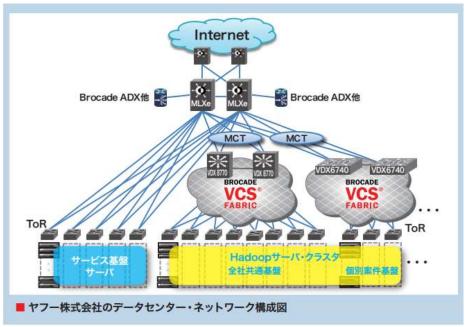
- 事実上flatの単一ネットワークでしか使えない
 - ◆ サーバがつながっているポートのVlanが変えられない
 - ◆ ノードに対するタグ付けもできない
 - ◆ 複数NWを用意してもデプロイ出来ない可能性がある
 - スケジューラからはノードに対応するVlanが分からない
 - **違うVlanを設定したノードでデプロイを始めてしまう可能性**
 - 通信できないのでタイムアウト-> エラーになる
- ヤフーでは1クラスタ1Vlanとすることで回避している
 - ◆ クラスタが乱立する

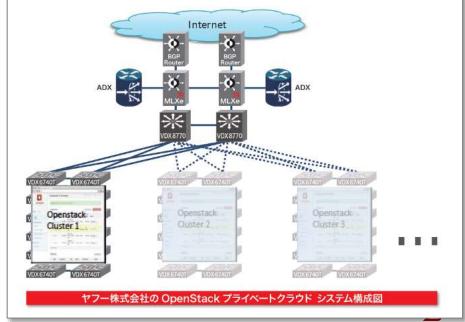

今、どんなものを 検証されていますか?

Ironic Brocade VDX Plugin

- 単一のflatネットワークからの解放
- エッジスイッチのVlanをIronicと連動して変更
 - ◆ デプロイ完了まではデプロイ用Vlan
 - ◆ デプロイが終わったらテナント用Vlanに切り替え
 - 再起動するとテナント用Vlanで疎通できる
- ネットワークごとにクラスタをわけなくて良くなるはず
- Mitakaから利用可能

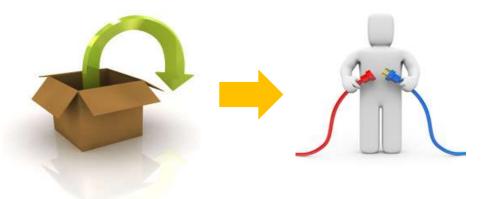
デプロイの流れ(with VDX)


ここで、大事なのは?

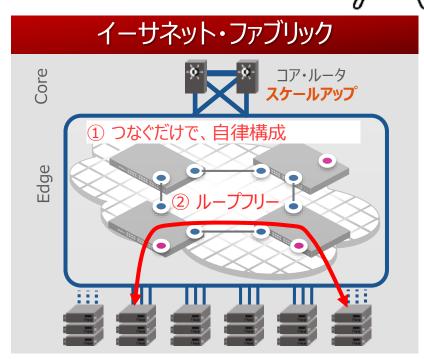

つ・な・が・る・こ・と

ヤフーさんのデータセンターを支える ブロケードのファブリックスイッチ VDX

国内最大級のHadoop基盤を構築し ビッグデータ活用によるサービス強化を加速 Neutronプラグインにより最適化されたネット ワークを構築し、LBaaS とFWaaS を実現

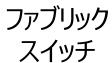


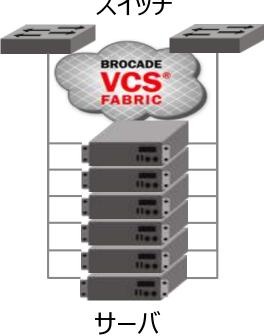
つ・な・が・る



箱を開けて、つなぐだけ

イーサネット ファブリックスイッチ VDXシリーズ




③ 設定の必要がないポート

④ 最短経路を選択

2台ではじめる OpenStack!

スモールスタートに最適な帯域販売

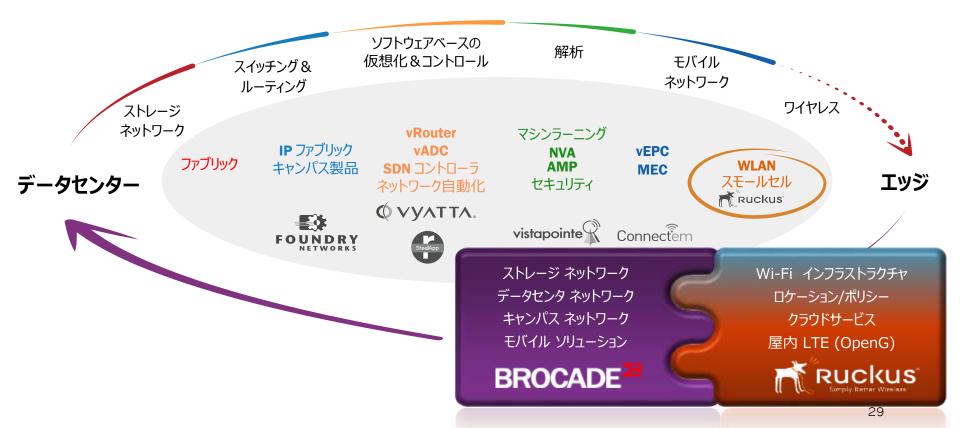
- 1. 48ポート1GEからスタート
- 2. 8ポートだけ10GEにアップグレード
- 3. ストレージ用にFCポートに変更
- 4. アップリンクに40GEも追加
- 5. サービスを止めずにオンデマンド!

VDX6740T-1G

今後の展望(野望)についてお聞かせください。

今後の展開

- 社内のすべての環境をOpenStackに載せる
 - ◆ 社内の物理サーバのIronic比率を高める
 - 最終的にはコントローラノード以外は全てIronicにできるはず
 - ◆ 全てをOpenStack化することで同じAPIで物理サーバもVMも 使えるようにする
- Ironicにすることでハードウェアのライフサイクルも進めやすくする
 - ◆ サービスアウトしたノードから取り替える



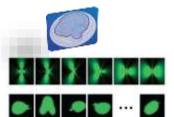
第二部 Brocade の新しい取組み

ユーザーに、より近い場所からサービスを提供

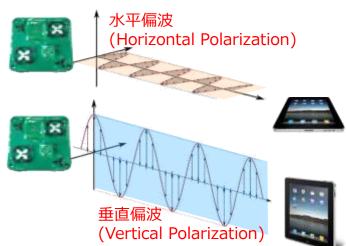
データセンターからワイヤレス・ネットワーク・エッジまで

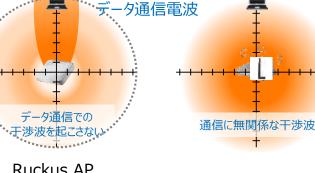
Ruckus 無線LANの特徴

(アンテナ技術)


アンテナ技術の違い (Beam Flex)

・スマートアンテナが、端末場所を認識後、 データ通信に最適なアンテナパターンを使用


◆ 端末への



アンテナ技術の違い (PD MRC)

小中学校の教室・オフィスや、ホール・大講堂などデバイスが多い環境でも快適

- クライアントからのフィードバックにより送信シグナルを最適化
- デバイスの向きを気にすることなく、最適な通信を提供
- 通信デバイスの反対方向は最小限の電波干渉

Ruckus AP ビームフォーミング

一般的なAP

データセンターネットワークの自動化

							openstack "			
WAN	Internet		VPLS		MPLS Cloud)	Juno Oct 2014	Kilo Apr 2015	Liberty Oct 2015	
VVAIN	MLXe MLXe						MLX ML2 plugin	MLX ML2 plugin		
DCコア			**************************************		SAN FC		VCS/VDX SVI	VDX and ICX ML2 Plugin VDX SVI & ACLs	VDX: Private L2 extensions	
L2/L3 ファブリック	VDX VDX 67xx 67xx	VDX VDX 67xx	BROCADE VCS FABRIC	VDX VDX 67xx	VDX VDX 67xx		SAN FC	ADC LBaaS SAN FC	ADC LBaaS SAN FC Zone alias & vF	
コンピュート/ ソフトウェアネットワーク			FWaaS	- [[m]]			vRouter*	vRouter	vRouter	
ソフトウェアネットワーク								VPNaaS	VPNaaS	
	[[VE] m]		Procedo					FWaaS	FWaaS	
Brocade vADC	Rack-1	[[mm]] Rack-2	Brocade vRouter	Rack-n-1	Rack-n-1	VPNaaS	vADC* (LBaaS)	vADC (LBaaS)	vADC (LBaaS)	

次世代プラットフォームのためのネットワーク BROCADE²⁵

大きな変化をとげる転換期

The New IP

Intel ARM Broadcom ハードウェア CAVIUM **BROCADE[™]**

OPEN

- 1. マルチベンダのオープンな環境
- 2. APIにより物理の縛りからの解放
- 3. 容易なスケールアウトと高速デリバリ
- 4. ユーザ自身がつくれるネットワーク

The New IP のエッジには NFV が最適

あらゆるお客様、アプリケーション、サービスのニーズに対応

Load Balancing L7 **VPN** ポリシーの設定と実行 14 NAT **NFV Firewall** L3 Routing 高速フォワーディングと Switching 12 ファブリック 高信頼アンダーレイ

SDI/NFV/Mobile におけるリーダーシップ

なぜ BROCADE なのか?

N.O.2

ソフトウェア ネットワーキング リーダーシップ

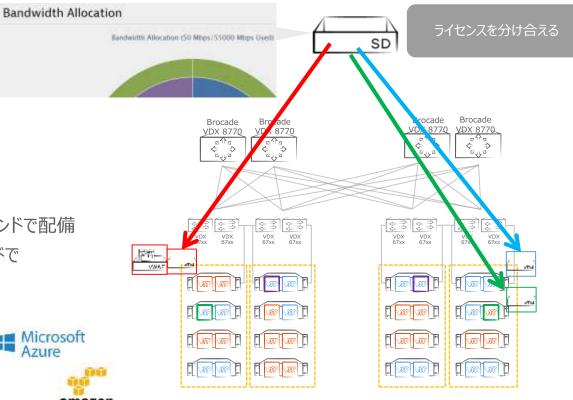
エンタープライズ クラウド NFV

オープン アーキテクチャ

イノベーション

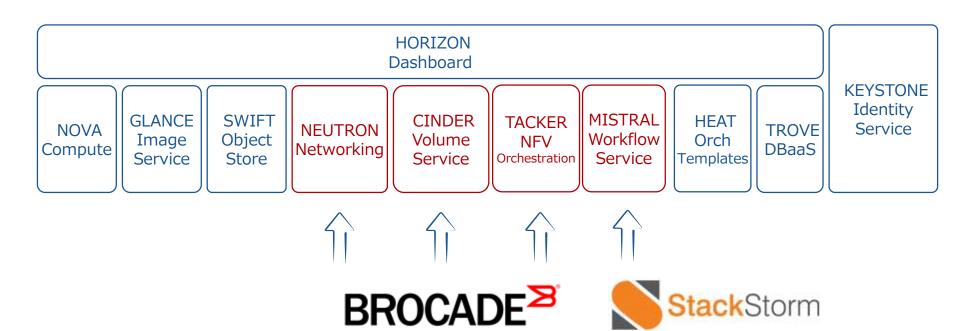
パートナーとの協業

ソリューション


VNFライセンスの統合管理(LBaaS)

vADC Service Director

- Brocade Service Director
- ADCインスタンス
 - インスタンスをオンデマンドで用意
 - 複数Versionを使い分け
- ライセンス
 - 規模に応じたライセンスをオンデマンドで配備
 - WebAppFW/機能もオンデマンドで
- メータリングとロギング



第三部 OpenStack Tacker OpenStack Mistral

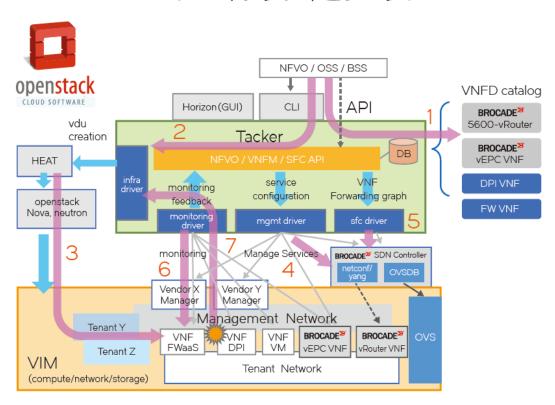
主な OpenStack プロジェクト

Neutron (ネットワーク), Cinder (ストレージ), Tacker(オーケストレーター) & Mistral (ワークフロー)へフォーカス

オープンソースへのコミットメント

Tacker (NFV Orchestration)

Mistral (Workflow Automation)

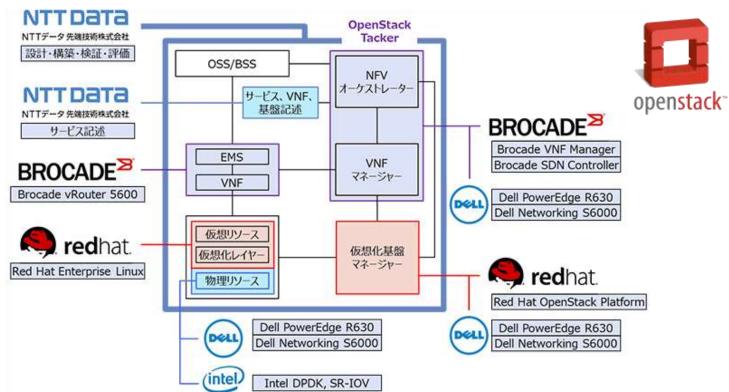


ETSI MANOベースの OpenStack VNF管理

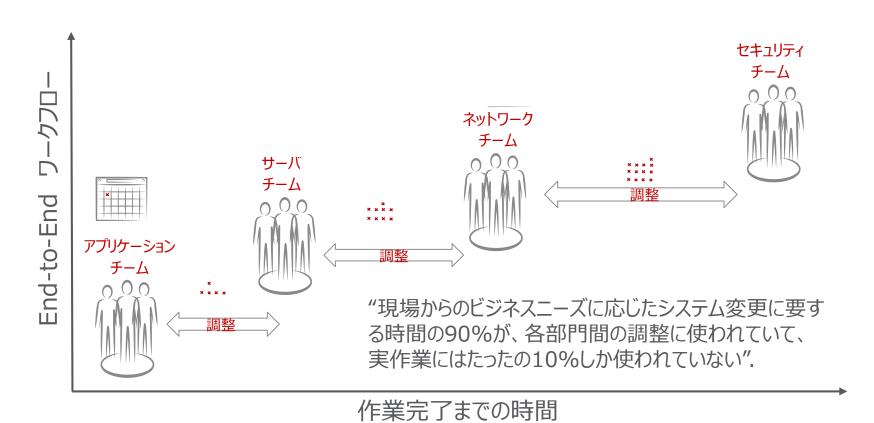
Tackerで提供される機能

- VNFカタログ TOSCA テンプレートを展開
- VNF ライフサイクル・マネージメント
- TOSCA VNFD テンプレートによる パラメータ指定
- VNF ユーザデータの挿入
- VNF の設定投入 インストレーションやアップデート
 - ✓ SDN Controller から NetConf/YANGを利用
 - ✓ カスタム・マネージメント・ドライバ
- ローダブルKPIとヘルスモニターの フレームワーク

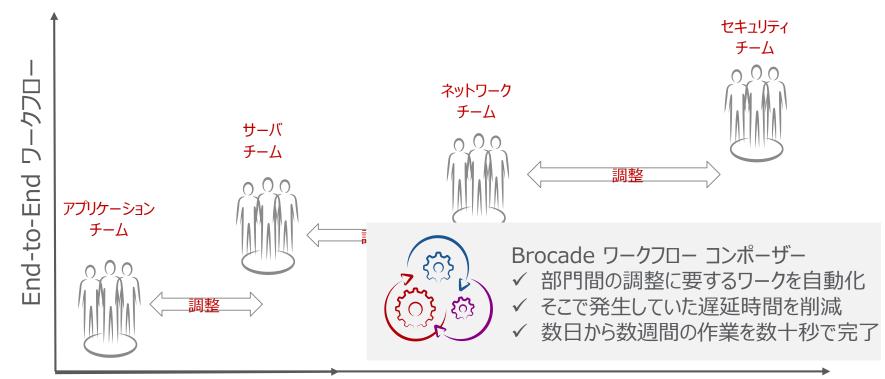
Tacker アーキテクチャとワークフロー



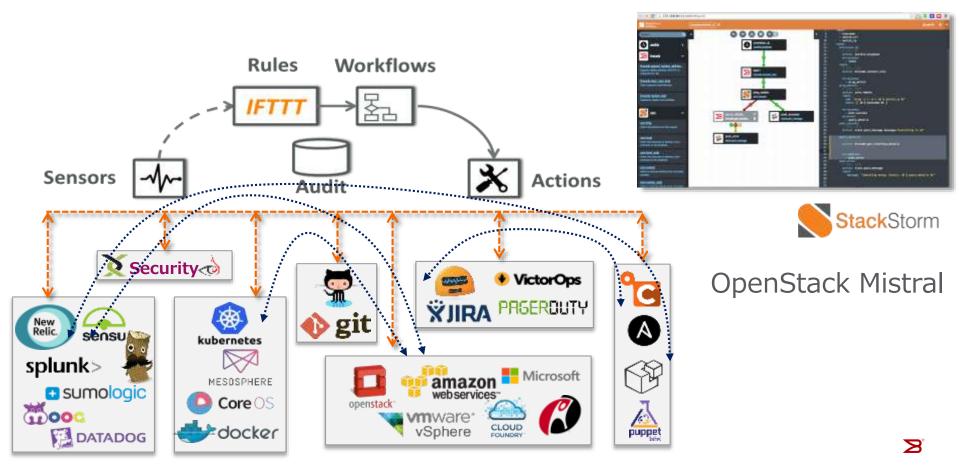
「OpenStack Tacker」による、VPNサービスの運用自動化 およびNFVの障害自動再構成による保守自動化


2016年6月6日: プレスリリース

SDI/NFV部門 グランプリ受賞



サイロ型の自動化だけでは足りない



部門間をまたがった自動化が必要になる

クロスドメイン・オートメーションこそが真の自動化

ネットワークの境界を越えて究極の自動化の世界へ

仮想障害を起こして耐障害性を日常的に検証



人工的にシステム障害を引き起こす、 逆転の発想のツール「Chaos Monkey」 をNetflixがオープンソースで公開

遅延猿、お掃除猿、あばれゴリラ。。。

Amazon EC2のインスタンスをランダムに落とし、サービスに対して仮想的な障害を引き起こす。 これにより、サービスがきちんと冗長化され、耐障害性を持つように作られているかを日常的に検証。

NEW WORLD. NEW NETWORK.

Brocade: Your Partner for the New IP

ありがとうございました

